- 摘 要
-
車 軼1, 尤 杰2, 徐東坡3, 仲偉秋1
(1 大連理工大學建設工程學部,大連116024;2 中興通訊股份有限公司CAF規(guī)劃系統(tǒng)部,深圳518055;3 中國人民解放軍73670部隊,南京210009)[摘要] 在分析5種具有不同輸入變量的神經(jīng)網(wǎng)絡模型的基礎上,建立了鋼筋混凝土無腹筋梁抗剪強度的優(yōu)化人工神經(jīng)網(wǎng)絡模型。該模型具有4個輸入變量(混凝土抗拉強度、剪跨比、縱筋配筋率和截面有效高度)和一個輸出變量(抗剪強度)。通過對數(shù)據(jù)的放縮處理,提高了網(wǎng)絡訓練效率。此外還對我國GB50010-2002規(guī)范、ACI318 -08規(guī)范、Eurocode2、日本JSCE規(guī)范和加拿大CSA A23. 3-04規(guī)范的無腹筋梁抗剪計算公式進行了對比研究。研究表明,神經(jīng)網(wǎng)絡模型具有較高計算精度,能夠很好地預測無腹筋梁的抗剪強度。在各國規(guī)范公式中,CSA A23. 3-04.規(guī)范的計算結果與試驗結果吻合很好,我國GB50010-2002規(guī)范、ACI318-08規(guī)范和Eurocode2公式計算結果的離散性較大。
[關鍵詞] 人工神經(jīng)網(wǎng)絡;抗剪強度;混凝土無腹筋梁
中圖分類號:TU375.1 文獻櫟識碼:A 文章編號:1002-848X(2011) S2-0223-06Artificial neural network model for sheer strength of reinforced concrete beams without web reinforcement
Che Yi1, You Jie2, Xu Dongpo3, Zhong Weiqiu1
(1 Faculty of Infrastructure Engineering, Dalian Uruversity of Technology, Dalian 116024, China; 2 ZTE Corporation CAF Planning & System Department, Shenzhen 518055, China; 3 People's Liberation Army 73670 Troops, Nanjing 210009, China)Abstract: An optinuzed artificial neural network( ANN) model for predicting shear strength of reinforced concrete beams without web reinforcement was presented on the basis of study on 5 ANN models with different input variables. The artificial neural network model has four input variables,i.e.concrete tensile strength, shear-to-span ratio, longitudinal reinforcement and effective depth, and an output variable, i.e. shear strength. By scaling the data processing, the efficiency of network training was improved. Predictions of shear design equations in GB50010-2002 code, ACI318-08 code, Eurocode2, JSCE code and CSA A23.3-04 code were also compared with test data. It is found that the proposed artificial neural network model predicts shear strength of beams without web reinforcement with a very good accuracy. Among the code equations, CSA A23. 3-04method fits tests data well, wlule equations in GB50010-2002 code, ACB18-08 code and Eurocode2 present large scatters of results.
Keywords: artificial neural network; shear strength; concrete beams without web reinforcement