- 摘 要
-
(華誠(chéng)博遠(yuǎn)工程技術(shù)集團(tuán)有限公司, 北京 100052)
[摘要]全面梳理了軸壓桿彎曲屈曲的理論分析過(guò)程和工程應(yīng)用方法。歐拉公式解決了軸壓桿彈性區(qū)的彎曲屈曲問(wèn)題。歐拉之后的學(xué)者完善了非彈性區(qū)的問(wèn)題,建立了以切線模量理論為基礎(chǔ)的軸壓桿非彈性區(qū)彎曲屈曲的歐拉公式。其后的學(xué)者通過(guò)考慮安全度的方式將其用于工程設(shè)計(jì)。新版《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》(GB 50017—2017)沿用我國(guó)自88鋼規(guī)以來(lái)的做法,以等效初撓度綜合考慮初始缺陷,按壓彎桿計(jì)算給出軸壓桿彎曲屈曲的設(shè)計(jì)公式。
[關(guān)鍵詞]歐拉公式; 軸壓桿; 彈性屈曲; 非彈性屈曲; 彎曲屈曲
中圖分類號(hào):TU391文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1002-848X(2019)19-0126-10
Flexural buckling of axially compressed bars
Wang Lijun
(Huachengbouyuan Engineering Technology Group, Beijing 100052, China)
Abstract:The theoretical analysis process and engineering application methods of flexural buckling of axially compressed bars were summarized. The Euler formula solved the flexural buckling problem of the elastic zone of an axially compressed bar. Scholars after Euler have perfected the problem of inelastic zone and established Euler formula for flexural buckling of axially compressed bars in inelastic zone based on tangent modulus theory. Subsequently, scholars used it in engineering design by considering the degree of safety. The new edition of Standard for Design of Steel Structures (GB 50017—2017) followed the practice of China since 1988-version steel design code to provide the design formula of flexural buckling of axially compressed rods calculated as compressed flexural rods, taking into account the initial defects with equivalent initial deflection.
Keywords:Euler formula; axially compressed bar; elastic buckling; non-elastic buckling; flexural buckling
作者簡(jiǎn)介:王立軍,博士,全國(guó)工程勘察設(shè)計(jì)大師,教授級(jí)高級(jí)工程師,Email:13901212966@sina.cn。
- 下載地址
-
你還沒(méi)注冊(cè)?或者沒(méi)有登錄?這篇論文要求至少是本站的注冊(cè)會(huì)員才能閱讀!
如果你還沒(méi)注冊(cè),請(qǐng)趕緊點(diǎn)此注冊(cè)吧!
如果你已經(jīng)注冊(cè)但還沒(méi)登錄,請(qǐng)趕緊點(diǎn)此登錄吧!