884aa四虎影成人精品,99久久国产综合精品女图图等你,97在线观看永久免费视频,久久精品国产精品亚洲38,ⅵdeodesetv性欧美

您現(xiàn)在的位置:建筑結(jié)構(gòu)>> 期 刊>> 2011年>> 第05期>>正文內(nèi)容
非比例阻尼線性體系振型組合法適用范圍探討?yīng)?/div>
張樹傳1,3,何玉敖1,王亞勇2
摘 要
(1 天津大學(xué)建筑工程學(xué)院,天津 300072;2 中國(guó)建筑科學(xué)研究院,北京 100013;3 廈門合道工程設(shè)計(jì)集團(tuán)有限公司,廈門 361004)
[摘要]對(duì)于非比例阻尼線性體系,可以采用基于反應(yīng)譜的復(fù)振型完全平方組合(CCQC)法和復(fù)振型平方和開方(CSRSS)法,而目前各國(guó)規(guī)范采用的仍是基于實(shí)模態(tài)的強(qiáng)迫解耦法。通過算例對(duì)復(fù)振型組合方法和強(qiáng)迫解耦法的誤差及其與非比例阻尼特征指數(shù)的關(guān)系進(jìn)行分析比較,并提出非比例阻尼線性體系復(fù)振型組合方法和強(qiáng)迫解耦法的適用范圍。
[關(guān)鍵詞]非比例阻尼;復(fù)振型;強(qiáng)迫解耦法;非比例阻尼特征指數(shù)
中圖分類號(hào):TU311-4文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1002-848X(2011)05-0063-05
Discussion on application scope of mode combination method for non-classically damped linear system
Zhang Shuchuan1,3, He Yu′ao1, Wang Yayong2(1 College of Civil Engineering, Tianjin University, Tianjin 300072, China; 2 China Academy of Building Research, Beijing 100013,China; 3 Xiamen Hordor Architecture & Engineering Design Group Co.,Ltd., Xiamen 361004,China)
Abstract:For non-classically damped linear system, the complex mode complete quadratic combination (CCQC) method and complex mode square root of sum of squares (CSRSS) method based on response spectra can be adopted. And in overseas seismic design codes, the forced decoupling method based on real mode is still adopted. The relation with index of damping non-proportionality and the errors of complex mode combination methods and forced decoupling method were analyzed and compared. The application scope of complex mode combination methods and forced decoupling method for non-classically damped linear system were discussed.
Keywords:non-classically damping; complex mode; forced decoupling method; index of damping non-proportionality
*建設(shè)部專題項(xiàng)目:基于結(jié)構(gòu)動(dòng)力剛度的建筑抗震設(shè)計(jì)(2007年31號(hào))。
作者簡(jiǎn)介:張樹傳,博士研究生,高工, Email: zhangsc@hordor.com。
參考文獻(xiàn)
[1]FOSS F K.Co ordinates which uncouple the linear dynamic systems[J]. Journal of Applied Mechanics,ASME,1958 (24):361\|364.
[2]IGUSA T, KIUREGHIAN A D, SACKMAN J L. Modal decomposition method for stationary response of non-classically damped systems[J].J. Earthquake Engineering Structure Dynamics, 1984(1):121\|136.
[3]XI YUAN ZHOU, RUI FANG YU, DI DONG. Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system[J]. Earthquake Engineering, 2004(4):597\|641.
[4]周錫元,俞瑞芳.非比例阻尼線性體系基于規(guī)范反應(yīng)譜的CCQC法[J].工程力學(xué),2006(2):10\|17.
[5]周錫元,董娣,蘇幼坡.非正交阻尼線性振動(dòng)系統(tǒng)的復(fù)振型地震響應(yīng)疊加分析方法[J].土木工程學(xué)報(bào),2003(5):30\|36.
[6]WARBURTON G B, SOM S R.Errors in response calculations for non-classically damped structures[J]. EESD, 1997(3):365-376.
[7]劉季,閻維明.土-高層建筑、高聳結(jié)構(gòu)相互作用地震反應(yīng)分析\[J\].哈爾濱建筑工程學(xué)院學(xué)報(bào),1988(4):16-33.
[8]桂國(guó)慶,何玉敖.非比例阻尼結(jié)構(gòu)體系近似解耦分析中的誤差分析\[J\].工程力學(xué),1994(4):40\|44.
[9]HANSON R D, SOONG T T. Seismic design with supplemental energy dissipation device[R].EERI, MNO-8, 2001.
[10]俞瑞芳,周錫元.非比例阻尼彈性結(jié)構(gòu)地震反應(yīng)強(qiáng)迫解耦方法的理論背景和數(shù)值檢驗(yàn)[J].工業(yè)建筑,2005(2):52\|56.
[11]RAY CLOUGH, JOSEPH PENZIEN. Dynamics of Structures [M]. 2nd Edition, Revised. New York:McGraw-Hill, 1994.
[12]TONG M,  LIANG Z,  LEE G C. An index of damping non-proportionality for discrete vibrating systems[J]. J. of Sound and Vibration, 1994(1):37\|55.
下載地址

    你還沒注冊(cè)?或者沒有登錄?這篇論文要求至少是本站的注冊(cè)會(huì)員才能閱讀!

    如果你還沒注冊(cè),請(qǐng)趕緊點(diǎn)此注冊(cè)吧!

    如果你已經(jīng)注冊(cè)但還沒登錄,請(qǐng)趕緊點(diǎn)此登錄吧!