- 摘 要
-
(1 東京工業(yè)大學結構工程研究中心, 橫濱 226-8503; 2 東京理科大學工學院, 東京 125-0051;3大成建設株式會社技術中心, 神奈川 245-0051; 4 日本建筑研究院, 茨城 305-0802)
[摘要]延性破壞是鋼框架中梁柱節(jié)點最常見的破壞模式之一。目前主要通過試驗方法來評價發(fā)生延性破壞鋼梁的塑性變形能力,其中材料的屈強比、梁的彎矩梯度和梁柱節(jié)點的詳細構造等都是重要的參數(shù)。但是在實際試驗中要涵蓋所有這些參數(shù)是不可能的,也是不現(xiàn)實的。此外,影響鋼梁塑性變形能力的另一個重要的因素是加載機制。最近幾年,長持時地震對結構構件的影響備受關注。長持時地震作用下,鋼梁往往承受長時間的低幅循環(huán)荷載,然而,目前的試驗研究中大多采用各個國家規(guī)范推薦的振幅遞增加載機制。通過數(shù)值分析方法,對長持時地面運動作用下鋼梁的塑性變形能力進行評估。
[關鍵詞]梁柱節(jié)點; 延性斷裂; 平面內數(shù)值分析; 循環(huán)荷載試驗; 塑性變形能力; 長持時地震作用
中圖分類號:TU391文獻標識碼:A文章編號:1002-848X(2015)11-0001-08
Plastic deformation capacity of steel beam-to-column connection under long-duration earthquake
Satoshi Yamada1, Yu Jiao2, Hiroyuki Narihara3, Satoshi Yasuda3, Takashi Hasegawa4
(1 Structural Engineering Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
2 Faculty of Engineering, Tokyo University of Science, Tokyo 125-0051, Japan; 3 Technology Center, Taisei Corporation,
Kanagawa 245-0051, Japan; 4 Building Research Institute of Japan, Ibaraki 305-0802, Japan)
Abstract:Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material′s yield strength ratio, the beam′s moment gradient, and beam\|to\|column connection details are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam′s plastic deformation capacity through analysis was introduced. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tend to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam′s behavior under standard incremental loading protocols recommended by respective countries. The plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.
Keywords:beam-to-column connection; ductile fracture; in-plane analysis; cyclic loading test; plastic deformation capacity; long-duration earthquake action
作者簡介:山田哲,博士,教授,Email: yamada.s.ad@m.titech.ac.jp。
參考文獻
[1]YOUSSEF N, BONOWITZ D, GROSS J L. NISTIR 5625 A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake[S]. National Institute of Standards and Technology, 1995.
[2]NAKASHIMA M, INOUE K, TADA M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake[J]. Engineering Structurces, 1998, 20(4-6):271-281.
[3]ROEDER C W. Connection performance for seismic design of steel moment frames [J]. Journal of Structural Engineering, 2014, 128(4):517-525.
[4]CLARK P, FRANK K, KRAWINKLER H, et al. SAC/BD-97/02 Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens[R]. 1997.
[5]Study on testing method for structural performance evaluation of steel structures[R]. Tokyo: Building Research Institute and the Japan Iron and Steel Federation, 2002.
[6]SEKI K, NARIHARA H, YASUDA S, et al. Study on safety assessment methods for super-high-rise steel buildings against long-period earthquake ground motions (part11): multi-cycle loading test of welded beam-to-column connection(outline of test)[C]//Proceedings of the AIJ Annual Meeting. Nagoya, 2012.
[7]JIAO Y, YAMADA S, KISHIKI S. Plastic deformation capacity of structural steel under various axial strain histories[C]//8th International Conference on Urban Earthquake Engineering. Tokyo,2010.
[8]AKIYAMA H. Earthquake-resistant limit-state design for buildings [M]. Tokyo: University of Tokyo Press,1985.
[9]KATO B, AKIYAMA H, UCHIDA N. Ultimate strength of structural steel members (I)[J].
Journal of Structural and Construction Engineering,
Transactions of the AIJ, 1966 (119): 22-30.
[10]YAMADA M, SAKAE K, TADOKORO T, et al. Elasto-plastic bending deformation of wide flange beam-columns under axial compression, part I: bending moment-curvature and bending moment-deflection relations under static loading[J]. Journal of Structural and Construction Engineering, Transactions of the AIJ, 1966(127): 8-14.
[11]YAMADA S, AKIYAMA H. Deteriorating behavior of steel members in post-buckling range[C]//Structural Stability and Design. Balkema, Rotterdam, 1995:169-174.
[12]YAMADA S, IMAEDA T, OKADA K. Simple hysteresis model of structural steel considering the Bauschinger effect[J]. Journal of Structural and Construction Engineering, Transactions of the AIJ,2002(559):225-232.
[13]MATSUMOTO Y, YAMADA S, AKIYAMA H. Fracture of beam-to-column connections simulated by means of the shaking table test using the inertial loading equipment[C]//Behaviour of Steel Structures in Seismic Areas. Balkema, Rotterdam, 2000: 215-222.
[14]Recommendation for design of connections in steel structures[S]. Tokyo: Architectural Institute of Japan, 2006.
[15]SUITA K, TANAKA T. Flexural strength of beam web to square tube column joints[J]. Steel Construction Engineering, 2000,7(26): 8-51.
[16]SUZUKI T, ISHII T, MORITA K, et al. Experimental study on fracture behavior of welded beam-to-column joint with defect[J]. Steel Construction Engineering, 1999,6(23):149-164.
[17]Japanese architectural standard specification JASS 6: steel work[S]. Tokyo: Architectural Institute of Japan, 1996.
[18]JIS Z 2201∶1998 金屬材料拉伸試件[S].日本工業(yè)標準調查會,1998.