哈利法塔結(jié)構(gòu)性能和響應(yīng)的驗證:足尺結(jié)構(gòu)健康監(jiān)測方案
Ahmad Abdelrazaq
- 摘 要
-
(三星C&T公司高層及復(fù)雜建筑部,首爾)[摘要]新一代的復(fù)雜高層建筑反映了社會在材料、設(shè)計、可持續(xù)性、施工和IT技術(shù)等領(lǐng)域的最新發(fā)展。雖然這些復(fù)雜的設(shè)計可以通過日益進步的結(jié)構(gòu)分析工具和軟件來完成,但是最終還要滿足規(guī)范的最低要求,而規(guī)范對于足尺結(jié)構(gòu)相關(guān)規(guī)定的正確性還有待驗證。筆者從方案階段直到結(jié)構(gòu)封頂全程參與了哈利法塔的設(shè)計和施工,這促使筆者對哈利法塔進行了深入的監(jiān)測研究,并開發(fā)了實時結(jié)構(gòu)健康監(jiān)測系統(tǒng)來驗證在設(shè)計和施工期間做出的計算假設(shè)。由162層上部結(jié)構(gòu)和3層地下室組成的哈利法塔高度達828m,為目前世界上最高的人造建筑。對上部結(jié)構(gòu)體系和基礎(chǔ)體系進行了簡要介紹,并研究了實時結(jié)構(gòu)健康監(jiān)測方案的進展情況以及結(jié)構(gòu)參數(shù)的預(yù)測值和實測值對比,為保密起見,一些實測數(shù)據(jù)在文中并未詳述。結(jié)構(gòu)健康監(jiān)測方案包括:1)監(jiān)控塔的基礎(chǔ)體系;2)監(jiān)測地基沉降;3)測量施工過程中和施工完成后巨柱和剪力墻的應(yīng)變和壓縮變形;4)實時測量塔的側(cè)向位移和在施工期間的動力響應(yīng)特性;5)測量施工期間建筑物在風荷載、地震激勵等作用下的側(cè)向位移;6)測量建筑物位移、加速度、動力特性和使用期間的結(jié)構(gòu)性能;7)監(jiān)測頂部小塔樓的動力特性和疲勞特性。在哈利法塔建設(shè)過程中采用的結(jié)構(gòu)健康監(jiān)測方案是未來的發(fā)展模式,隨著結(jié)構(gòu)健康監(jiān)測領(lǐng)域的不斷發(fā)展,將會出現(xiàn)融合最新設(shè)備及IT先進技術(shù)的結(jié)構(gòu)健康監(jiān)測系統(tǒng)。[關(guān)鍵詞]哈利法塔; 結(jié)構(gòu)健康檢測系統(tǒng)(SHM); 全球衛(wèi)星定位系統(tǒng)(GPS); 實時監(jiān)控; 柱壓縮變形; 測斜儀; 風工程管理; 重力荷載管理中圖分類號:TU973 文獻標識碼:A 文章編號:1002-848X(2014)05-0087-11作者簡介:Ahmad Abdelrazaq, 碩士,三星C&T公司高層及復(fù)雜建筑部執(zhí)行副總裁,從事高層建筑和大跨建筑的結(jié)構(gòu)設(shè)計,混凝土結(jié)構(gòu)、鋼結(jié)構(gòu)和混合結(jié)構(gòu)中創(chuàng)新性結(jié)構(gòu)體系研究以及超高層建筑的設(shè)計與風振激勵響應(yīng)的動力反應(yīng)控制,Email:a.abdelrazaq@samsung.com。Validating the structural behavior and response of Burj Khalifa: Full scale structural health monitoring programsAhmad Abdelrazaq(Highrise & Complex Building, Samsung C&T, Seoul, Korea)Abstract: A new generation of tall and complex buildings reflects the latest developments in materials, design, sustainability, construction, and IT technologies. While complicaed design can be managed through advances in structural analysis tools and software, ultimately the design of these buildings still relies on minimum code requirements that are yet to be validated in full scale. The involvement of the author in the design and construction of Burj Khalifa from inception until completion prompted the author to develop an extensive survey and real-time structural health monitoring program to validate the assumptions made during the development of the design and construction planning of the tower. At 828m, Burj Khalifa is the world’s tallest man made structure, composed of 162 floors above grade and 3 basement levels. A brief description of the structural and foundation system of the tower was provided and the development of the survey and real-time structural health monitoring programs (SHMP) was discussed. Correlation between the predicted and actual measured structural behavior was also discussed, however, because of confidentiality the actual measured data cannot be disclosed at this time. The SHM included: 1) monitoring the tower’s foundation system; 2) monitoring the foundation settlement; 3) measuring the column/wall strains and shortening during and after construction; 4) real time measuring of the tower lateral displacement and dynamic characteristics during construction; 5) measuring the building lateral movement under lateral loads (wind, seismic) during construction; 6) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior during service life; 7) monitoring the pinnacle dynamic behavior and fatigue characteristics. While the SHMP developed for Burj Khalifa is a futuristic model at the time of its development, this field is constantly evolving and a new generation of SHM systems will emerge that uses the latest technological advances in devices and IT technologies.Keywords: Burj Khalifa; structural health monitoring(SHM) system; global positioning system(GPS); real time monitoring; column shortening; tiltmeter; wind engineering management; gravity load management參考文獻[1]ABDELRAZAQ A. Design and construction planning of the Burj Khalifa, Dubai[C]//Process of ASCE Structures Congress, 2010:12-14.[2]BROWNJOHN J M, PAN T C, DENG X. Correlating dynamic characteristics from field measurements and numerical analysis of a high rise building [J]. Earthquake Engineering & Structural Dynamics, 2000, 29(4): 523-543.[3]BROWNJOHN J M, PAN T C. Response of a tall building to long distance earthquakes \[J\]. Earthquake Engineering & Structural Dynamics, 2001, 30(5):709-729.[4]KIJEWSKI-CORREA T, YOUNG B, BAKER W F, et al. Full-scale validation of finite element models for tall buildings [C]//Process CTBUH.Chicago, 2005.[5]Full-scale validation of the wind-induced response of tall buildings: updated findings from the Chicago monitoring project[C]//Proceedings of Americas Conference on Wind Engineering. Baton Rouge, LA, 2003.[6]NI Y Q, XIA Y, CHEN W H, et al. Monitoring of wind properties and dynamic responses of a supertall structure during typhoon periods[C]//Proceedings of the 4th International Conference on Structural Health Monitoring and Intelligent Infrastructure. Zurich, 2009:22-24.[7]NI Y Q, XIA Y, LIAO W Y, et al. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower[J].Structural Control and Health Monitoring, 2009, 16(1):73-98.