海底隧道不同地質(zhì)條件的耦合響應(yīng)分析*
吳占瑞1, 漆泰岳2, 李斌2, 劉江峰2
- 摘 要
-
(1 中鐵十一局集團(tuán)有限公司, 武漢 430061;2 西南交通大學(xué)交通隧道工程教育部重點(diǎn)實(shí)驗(yàn)室,成都 610031)[摘要]為了研究富水?dāng)鄬拥葟?fù)雜地質(zhì)條件對海底隧道圍巖的影響,以青島膠州灣海底隧道為工程背景,采用三維有限差分軟件FLAC3D建立三維數(shù)值模型對海底隧道不同地質(zhì)條件下的耦合響應(yīng)進(jìn)行計(jì)算分析,同時(shí)選取典型地段,利用現(xiàn)場實(shí)測數(shù)據(jù)和數(shù)值計(jì)算結(jié)果進(jìn)行相互驗(yàn)證。分析結(jié)果表明,斷層對海底隧道圍巖的影響相對較小,而水的影響則要大的多,尤其是在斷層與地下水耦合的情況下,有可能導(dǎo)致隧道洞周失穩(wěn)。地下水的存在會極大地影響隧道的穩(wěn)定,而當(dāng)圍巖條件又較差時(shí),掌子面及開挖未及時(shí)支護(hù)段極易失穩(wěn)破壞。在富水?dāng)鄬悠扑閹е?,相對于隧道的襯砌安全和洞周的穩(wěn)定,掌子面更容易失穩(wěn),掌子面的穩(wěn)定是控制隧道穩(wěn)定的關(guān)鍵因素。[關(guān)鍵詞]海底隧道; 富水?dāng)鄬?/span>; 耦合響應(yīng); 數(shù)值分析中圖分類號:U452 文獻(xiàn)標(biāo)識碼:A 文章編號:1002-848X(2013)22-0091-05Coupling response analysis of different geological conditions of the subsea tunnelWu Zhanrui1, Qi Taiyue2, Li Bin2, Liu Jiangfeng2(1 China Railway 11th Bureau Group Co., Ltd., Wuhan 430061, China; 2 MOE Key Laboratory ofTransportation Tunnel Engineering, Southwest Jiaotong University, Chengdu 610031, China)Abstract: In order to analyze the effect of the water-rich fault of complicated geological conditions on the surrounding rock of the subsea tunnel (taking the subsea tunnel that locates in Qingdao Jiaozhou Bay for an example), numerical simulation for the coupling response in different geological conditions of subsea tunnel was made by three-dimension finite difference software FLAC3D, and the calculation results were mutually verified with the experimental data measured in typical engineering area. The analysis results indicate that the effect of the water on the surrainding rock of the subsea tunnel is much higher than the fault, especially in the conditions that the fault couples with the ground water, which could lead to instability of the surrounding rock. The existence of the ground water greatly affects the stability of subsea tunnel and it is prone to cause unstable failure in the tunnel face and not timely supported segment when the conditions of the surrounding rock are poor. In water-rich zone of fault fracture, the tunnel face is easier to suffer instability than that of the lining and surrounding rock around the tunnel. The stability of tunnel face is the key factor to control the stability of the tunnel.Keywords: subsea tunnel; water-rich fault; coupling response; numerical analysis*國家自然科學(xué)基金項(xiàng)目(51278423),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助(WSJTU11ZT33),教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃資助(IRT0955)。作者簡介:吳占瑞,博士研究生, Email: wuzhanrui@126.com。參考文獻(xiàn)[1]李鵬飛,張頂立,周燁.隧道涌水量的預(yù)測方法及影響因素研究[J].北京交通大學(xué)學(xué)報(bào):自然科學(xué)版, 2010,34(4):11-15.[2]李兵,張頂立,房倩,等.海底隧道建設(shè)全過程核心安全風(fēng)險(xiǎn)分析[J].北京工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2010,36(4):463-468.[3]ARILD PALMSTROM. The challenge of subsea tunnelling [J].Tunnelling and Underground Space Technology, 1994, 9(2):145-150.[4]TOR GEIR ESPEDAL, GUNNAR NAERUM. Norway's rennfast link: the world's longest and deepest subsea road tunnel [J].Tunnelling and Underground Space Technology, 1994, 9(2):159-164.[5]汪磊,李濤.海底隧道穿越斷層破碎帶預(yù)注漿加固穩(wěn)定性分析[J].鄭州大學(xué)學(xué)報(bào):自然科學(xué)版,2010,31(6):73-77.[6]羅利銳,劉志剛,陳文濤,等.紅外探測技術(shù)在海底隧道地質(zhì)預(yù)報(bào)中的應(yīng)用[J]. 地下空間與工程學(xué)報(bào),2010,6(4):775-780.[7]李廷春,李術(shù)才,陳衛(wèi)忠,等. 廈門海底隧道的流固耦合分析[J].巖土工程學(xué)報(bào),2004,26(3):397-401.[8]TB 10121—2007鐵路隧道監(jiān)控量測技術(shù)規(guī)程[S]. 北京:中國鐵道出版社,2008.
- 下載地址
-